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ABSTRACT

The lubricatlon equations for an arbitrary Newtonian
fluid are derived directly from the general equations for
conservatlion of mass, momentum, and energy. From the lubri-
cation equations an inequality is obtained for the 1nternal
£ilm temperature’fise. The isothermal film equations are
theﬁ-derived, .%gén, for perfectly-aligned self-acting Jjour-

nal bearings, a conservatlion equation is obtained. For gas

bearings this condition gives: Y ‘

7
P21 349 = constant

O —— 3

along the axis of the bearing. Application of this cgndition
to the infinitely-long gas bearing glves more accurate pres-
sure solutions for this case,

The Katto-Soda form of the differential equation for the

infinitely-long bearing is solved by a serles expansion in

the eccentricity ratio, the first terms of which give the orig-

inal, approximate Katto-Soda solution, In addition, solutions
obtained numerically by digital computations are presented in

graphical and tabular form for eccentriclty ratios from 0-0.9

and sompressible bearing parameter, A, from 07%.
Design cherts based on these calculations are provided.

1

RN



THE FRANKLIN INSTITUTE e Laboratories for Research and Development

I-A2049-10
TABLE OF CONTENTS
Page
ABSTRACT [ 3 E ] . - E L] » » L ] L3 [ ] - - [ ] - L] - L] - [ ] » L) * i
NOMEch LATUR-E E ] . - L ] - L] L] L] . - - . L) [ ] - E ] [ ] L 3 - L ] - i i i

INTRODUCTION . . & & & & & ¢ s o o o o o o s o o s & = 1
BASIC EQUATIONS OF LAMINAR LUBRICATION . . . & & « o & 2
TEMPERATURE VARIATION WITHIN LUBRICATING FIIM . . . . 3
ISOTHERMAL FILM EQUATIONS . . ¢ v ¢ &« « & 2 s o o o & 6
DIFFERENTIAL EQUATION AND MASS CONTENT OF INFINITELY-
LONG, SELF-ACTING JOURNAL BEARING . . . . « « &« « & 9
SERIES SOLUTION FOR THE PRESSURE IN INFINITELY-LONG,
SELF-ACTING, GAS-LUBRICATED JOURNAL BEARING . . . . 14

DIGITAL COMPUTER SOLUTIONS . . + « &« &« « « « « &+ « « « 19
DESIGN CHARTS . . v & v ¢ ¢ 4 o o o s s o o o o o « « 28
ACKNOWLEDGEMENTS . . + 4 &« & v 4 ¢ o o o o o s o o o+ 35
REFERENCES . . 4 &« ¢ « ¢ & & o o« o 2 s« s = s s+ « s« s« 2 36
APPENDIX . 4+ . ¢ ¢ o ¢ & o 4 o s o s 2 o s o o o + + s+ 38

11



THE FRANKLIN INSTITUTE e Laboratories for Research and Development

1-A20)9-10

Nomenclature:

Symbo.l

u

W

Heaning
function of " " defined by eq. 68
function of "¥" defined by eq. 71
function of "¥" defined by eq. 69
function of "¥ " defined by eq. 72
bearing clearance

specific heat of fluid

friction coefficient defined by eq . 80
load coefficient defined by eq. 78
diameter of shaft 7

film thickness; also, fluid enthalypy
thermal conductivity of fluid

length of very long bearing

Mach number corresponding to surface velocity of
shaft; also, moment required to turn shaft

Prandtl number of fluid = Cp /u/k
pressure '

space~dependent heat addition per wanit volume per
unit time

radius of shaft

surface velocity of shaft

temperature

velocity of fluid in x-direction; a lso, u = Y- 7

veloclty of fluid ia y-direction; a lso, v, stands
for either sin(kp) or cos(kg).

load on bearing

i1ii
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Symbol Meaning

coordinate in Cartesian system; also, RO
coordinate in Cartesian systenm
coordinate in Cartesian system

angle defined by eq. 5W

eccentricity, defined by eq. 81

j / Ay at the point of maximum f£ilm pressure.
o & See eq. 12.

angle around bearingz periphery, measured counter-
¢lockwise from point of minimum film thickness.

X
y

b:4

/2

/9, angle corresponding to maximum film pressure
(4

s—

é

(ph)pax See eq. 47,

fluid viscosity

a Katto=-Soda bearing parameter, defined by eq. 57.
also, kinematic viscosity of i‘iuid.

mass density of fluid
1 -ECOS(/G) See eq. 55.

f %47' at the point of maximum pressure.
4’ Seé eq. 17.

/=£§a{p See eq. 37.

dimensionless pressure defined by eq. 53.

gg\{ YD T2

angular velocity of shaft

Subsecript Meaning

Supe‘%jsgcript
* (super.) denotes standard reference quantity
o (sub.) zaroth order, ete,
w {sub.) wall

iv
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REFINEMENTS OF THE THEORY OF THE INFINITELY-LONG,
SELF-ACTING GAS-LUBRICATED JOURNAL BEARING

Harold G. Elrod, Jr.
Albert Burgdorfer

Introduction:

Gas-bearing technology has now a forty-five year his-
tory, dating back to the pioneer work of Harrison(l). More-
over, in this field there has been a recent spurt of activity
caused by the possibility of Important applicatlons. Never-
theless, 1In the course of progress towards useful devices,
gaps In our knowledge have appeared, even 1in connection with
the more elementary forms of lubricating equipment. The
present paper endeavors to close a few such gaps which have
appeared in connection with the infinitely-leong, self-acting,
gas-lubricated Jjournal bearing. The theory of this type of
bearing 1s reviewed, mathematical techniques for numerical
development of the theory are discussed, and filnally, im-
proved design charts for engineering use are presented,

Nc attempt will be made here to review and assess the
extenslive contributions of prior workers on the subJject of
this paper. A 1<cent comprehensive bibliography(z) of gas-
lubrication research 1s avallable, to which the interested
reader can refer. Two papers connected especially closely
with the present research are those of Ausman(3) and of Katto
and Soda(”). In each of these papers, approximate solutions

1
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of' the gas-bearing equations are given, together with design
charts based on these solutions. Reference to these works
will be made subseguently when comparisons are made with the
present results,

Basic Equations of TLaminar Lubrication:

The general differential equations expressing the con-
servation of momentum, mass and energy for an arbltrary New-
tonian fluid(5) constitute the foundation for tiie present
analysis. Continuity of velocity and temperature is assumed
at all fluid-solid interfaces. In a paper presented in this
Symposium, the validity of these differential equations for a
Newtonlan fluld is examined by Reiner, and second-order cor-
rections are proposed. The assumed boundary conditions are

Justifiable in most lubrication applications, but Burgdorfer«”

has shown that some gas bearings operate ir the slip-flow
regime, If the molecular mean free path does not exceed
about five per cent of the radial clearance in the bearing,
discontinuity effects at fluld-solid interfaces are not quan-
titatively very significant.

In Appendix I the basic equations of laminar lubrication
are derived from the general conservation equatiocns by means
of a small-parameter technique in which the fluid fiim thick-
ness-to-length ratio (h/L) serves as the small parameter. The
resulting equations are as follows (See Nomenclature for mean-

ing of symbols):
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;’);?: ?/'45’{; (1)
;}: 0 (2)
5’;“—‘ jz/”é'} (3)

Jﬁn// (“ x * #dgjLw‘adﬁ) 2y 2; //3 )’L/lf/f
(4)

%“+ 2?”-,# 9.2%.“’=o (5)

The fluld properties in these squations may be variable. Thus
both llquids and gases are included.

Temperature Varlation within Lubricating Film:

The strict solution of any lubricatlion problem would in-
volve the coupling of the foregoing differential equatlons for
the fluid with the differential aquations of elasticlty and of
heat conduction appropriate for the shaft and bearing. To sim-
plify the system of squations which must be considered, we
shall here neglect both strain and temperature gradient within
the shaft and bearing, and assume that shaft and bearing are at
the same temperature. In casss where this latter c:zsumption 1is
Justlifiable, the internal temperature rise of the f£film is usual-
ly negligible, as will now be proved.

To Investigate the magnitude of the transverse temperature

rise, we consider the polnt of maximum f£ilm pressure. At this
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point: 2_2_5:__. 2@5 _ 2;;915 - O (6)
In the absence of pressure gradient, egs. 1, 3 and 4 simplify
o 2%/“ ?é? =0 (7)
;g/t g;"s 0 (8)
SAT = - B G (5

Let us suppose that the surface &t y = 0 has veloclty
components U, O, W in the x, y and z directions, respsctively,
and that the surface at y = h is stationary. The appropriate

solutions of egs. 7 and 8 are then readily found to be:

w = y(/_ }il) (10)
w = M/(/— i) (11)
#
where: ¢ Eof/—ig— (12)

Substitution of egas. 10 and 11 into egq. 9 gives:

2 27 . U du + W du
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Integration yielda:
, ) /
4 5?-—: _3.-%. U -+ :fé_'-w" + congton? (14)
s A %
- Uslng eqs. 1C and 1l again, ws get:
A 27 Jz’( &
S LA D i . v
T 5 3;,)+ Concfant (15)
where! g2 = y2 + @ (16)

Now at the point of maximum pressure, 1%.,, can be re-
garded as a functlon of temperature only. Hence we deflne

the new fluid property: 7

%sr//;-—éd? (17)
%

Because both "k" and "#2" are inherently positlve, ”55* increas-
es monotnnically with *T". With the temperatures at y = O and
y = h equal, the net change in '35' across the film is zero.
Hence the integral of the right-hand side of eq. 15 must vanlsh.

The constant is thus determined, and the final expression for

¥ [
the distribution of $£ is:

z
# = %%h-(/—-}%) (18)

Wy
The maximum value of 95', which corresponds to the maxlmum

value of temperaturs, occurs where & = ¢

¢ - 2 (19)
max. 'l
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Equation 19 is perfectly general for the maximum value
of ;5ﬂ at the point of maximum pressure in the fllm. We have
not proved that this squation gives the maximum value of ?é”
occurring anywhers in ths bearing. Howsever, it does glve the
valua of 9£€x

at least representative of values occurring slsewhere in the

at a very important point, and this value must be

film.

An examination of fluid propertiss discloses (with no ob-
ssrvad sxceptions) that-é%& increages wlth temperature for both
liquids and gases. Hence 4§fa is less in value at the film
edges than internally. As a result, we can write the following
ugeful inequality for checking transverse tempsrature variatlion

in a lubricating film,

2
VA = o (20)
ma x. w J)(%)o
In the case of a perfect gas with constant specific hests,
the foregoing inequality can also be written as:
‘_%.Ts ’%J A s Z/‘Zz (21)

where "M" 1s the surface Mach number; 1. e., the ratio of the
surface veloclty to the velocity of sound in the gas.

Isothermal Film Equations:

In many applications, eq. 20 {or 21) can be used to es-

tablisgh thtat the transverse temperature variation within the

6
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lubricating film 1s negligible. In this case, the temperature
averywhers within the film will be constant when the bearing
and shaft are uniformly at the same tompersturs. Hence all
fluld properties become functions of pressure only. Subject
to this condition, the differential squation for the pressurs
In a lubricating film has heen derived many places. We repeat
the derivation hers only for the sake of completeness.

In an 1sothermal film all fluid propertles are independent

of "y", sincs "p" isg independent of "y". Thus eqs. 1 and 3

become 9"; 7D
2?"2““/%2—6 (22)
2% _ 1 P
271”/%9% (23)
The boundary conditions
u(0) =U; u(h) =0
(24)
w(0) = W; w(h) =0
are satisfled by the following solutions of egs. 22 and 23.
= - &
w= Ul 2:) z/»mﬁ,{ £y) (25)
pr 2
w= W0~ £)+ %23(}—%;) (26)

The mass continulty equation (eq. 5) can be integrated

with respect to "y" to give:

4
Jarok + Gpmds=o

T
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Equation 27 can alternatlively bs wrltten as:

4 h
j‘%/of“”/# + ngﬂfw‘d = 0 (28)
) o

because (a) the integration commutes with both derivatives
(b) the velocitiss vanish at the uppsr limit, y = h
{c¢) the fluid density is independent of “y".

We can now integrate the velocities given by eqs. 25 and 26,

as required in eq. 28, tec get:

2 ) P) wan
Sr(Y BB ) p (i) o

e 2 %jgf +2-§-;;43§§ =6V W)
There 1s a useful exact analogy which should here be

pointed out between the pressure in a lubricating film and

the temperature in a constant density, moving fluid. To il-

lustrate this fact, lst us rearrange eg. 30 in the following

form:

d _ 7 %72
L) (v W)= S A+ AR S

—6/(&%+W%) (31)

In this equation, "p" plays the role of temperaturs, while

"gt gnd "W" retain their meaning as velocities. The quantity
5%6{5/‘719 intrinsically pesitive, because the fllm thickness
is certainly positive, and /j’/é’)r, the "Newtonian veloclty of

8
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sound,” 1s positlive for any mechanically stable substancs.

Hance we lst éfczg) play the roles of volumetric specific heat.
7"’

The quantlty,f%?a i1s inherently positive, so we let is serve
in the analogy as thermal conductivity. Finally, the last
group of terms, belng the product of "/9” with a space-depen-
] dent function 6(0%4}(/%) , we take to be a temperature and
space-dependent internal source of heat. Thus the aquation in

convective heat transfer analogous to eq. 31 1s:
c[yéf WoT )= 2 p 27, 2 ,3_7’ 2z (32)
ox* 5z 91+ 2% 8T +3(%2)
The terms in this last equation have been defined by the pre-
ceding discussion. This analogy sesnables one to exploit Intul-

tion and solutions acquired in another, well-established fleld.

Differential Equation and Mass Content of Infinitely-Long
Self-Acting Journal Bearing:

Figure 1 shows schematlically a long, self-acting journal
bearing. Here "x" denotes peripheral distance measured in a
counter-clockwise dirsction, and "z" denotes axial dlistance.

The use of "x" to denote a curvilinear, rather than recti-
linear distancs, has been examinsd by Elrod(T) for the case

of fluids with constant properties, and the effect has been
found to be exceedingly slight. Thers is no reason to supposs
that otherwlge wlll bs the case for flulds with variable proper-
tles.

When a Journal bearing ls perfectly aligned, with both ends

9
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SCHEMATIC DRAWING OF LONG, SELF-ACTING JOURNAL BEARING

10
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exposad to the same ambient pressure, there is a simpls conserva-
tion condition which can be derived from eq. 30. For this situ-
ation: h=nh(x) and W=0 (33)

and 8gq. 30 reduces to:

9/0/175 ﬁa_fr ?j(//gf';é (34)

Now all flow quantities are cyclic in "x"; i. e., thelr net
change circumferentially around the shaft 1s zero. Hencs, 1if
we integrats eq. 34 around the shaft, the right-hand glde re-

duces to zero, and we are left with:

33 _ 3 .
ﬁa%ﬁé;;alx-p%?%;gdz_o (35)

Or:
55/73%% dx = A a constani (36)
Since both "# " and L/t" are functions of "p" only, we
. = [
can define a new function: /;k; J(;u_ﬂéﬁ ( 37)
in terms of which eg. 36 bscomes:
2 4t — 2 B4 A= A
9;;‘2 #ioe) X dx 53 g{/’/'ﬁ x (38)
L) dr=Az + 8 (39)

The cyclic integral in eq. 39 must have the same value at
=0 and z = L. Hence the conatant "A" must be zero. The

following conservation equation then results:

11
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55/7%01)(:/'{“' 99//35/% (40)

where.;)C; corresponds to amblent pressure, and may be taken
as zero, if desired. Sincs, very closely,
h= ¢ (l+ €cos®) (41)

we have!

5663‘0/;& = cjké(/% écmﬁ)acfﬁ = 277'7?03(”%62/ (42)
95;,’)(0& = 2rRI(H eV, ws)

This last equatlon appllies to any Newtonlan fluid, in the ab-
gence of cavitation.

If the lubricant is a perfect gas, then its viscoslty 1sg
independent of pressure, and, &t constant temperature, 1ts den-
sity 1a proportional to the pressurs. Hence we can taks ;X:
equal to p2. That is}

jﬁ‘;bza/x = constant = Zﬂ';FCJ(/’L,‘a“zéz)/ewz (44)

Sincs this condition applies tc a gas Journal bearing, how-
ever long, it applles to the "infinitely long" bearing.
That is, it applies to the central region of a long bearing,

far from either end, where the pressure is essentially a func-
tion of "x" only. It is only in terms of this region that we
may think of the "infinitely long bearing®, since ctherwise we
can establish no connection with an ambient pressure, and hence

noe connection with any physically real problen.

12
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Bquation 43, with its various specializations, such as
eq. W, furnishes a condition which sets the general pressure
level, and hence the mass content, of any continuous-film, in-
finite bearing. It is an important relation in the theory of
the infinite gas bearing, and has not, so far as the authors
are aware, been previously employed. 1In the case of non-cavi-
tating films of lncompressible fluid, the mass content of the
bearing is, of course, known. Also, if the viscosity is con-
stant, the load-carrying capacity ol the bearing can be com-
puted without knowledge of the general pressure level. How-~
ever, eq. 43 still applies, and might be useful for predicting
the onset of cavitation, or for refined treatments with variable
viscosity.

The differential equation for the infinitely-long bearing
is obtained from eq. 34 by eliminating z-derivatives., It is:

dph dp . 6 U gk (45)
dx A4 ;ﬁf X
Integrating once, we obtalin the following first-order non-

linear differential equation whose solution involves specifi-

cation of two constants, one of which 1s shown explicitly.
3
//0_;/1 5_/{(’ = b [//0/7 4 Constan? (46)

The two constants are determined by requiring (a) that the
solution be cyclic in "x" and (b) that it satisfy the condi-
tion given by eq. 43.

13
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Series Solution for the Pressure in Infinitely-Long, Self-Act-
Ing Gas-Lubricated Journal Bearing T

For gas-lubricated bearings, eq. 4 can be readily put in

the form: d 6 y/?[_ P

wvhere O = x/R and "k " is the value of the product 'ph'" at a

stationary point for the pressure. When the pressure in the
film varies and the film thickness is given by eq. 41, there
are two such stationary points, one corresponding to the maximum
pressure “pl" and one corresponding to the minimum pressure “pz".

Since "k, " 1is limited to & single value, we must have:

ors b _ A (49)
AT R

Now the ratio of hl/h2 is certainly less than the maximum
value of film thickness c(/ + €¢) divided by the minimum value
of film thickness c(/ -¢). Hence:

ﬁ—- = /+E€ {50)
7, /I~ &

From eq. W+ it is easily seen that p, is greater than p, and
that Py is less than D, . Then from eq. 50 we get:

S L T
Cohh= AL A (52)

It is evident from eq. 52 that the load-carrying capacity of
1k
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a gas-lubricated journal bearing has a limit which cannot be
exceeded through changes in gas or in speed, but only through
changes in allowable eccentricity or in ambient pressure.

Clesed-form solutions of eq. 47 do not exist, but approxi-

mate analytical scluticns can be very helpful. Both Ausman(3)
and Katto and Soda(h) have developed such solutions. In the
analysis which follows, a series expansion for the film pres-
sure will be obtained, the first terms of which give the Katto
and Soda solution, with succeeding terms giving refinements
thereof. Let us begin by introducing the XKatto and Soda vari-
ables. They are:s

p= AE(-€) (53)
- & + Coe O
¢ 8 = T eai 6 (54)

In terms of these new variables, the differential equation

corresponding to eq. 47 iss

LY _ [,_ T
i =7 7 7 (55)
where: T= /—¢ m/é (56)
and: p HCHNIZEZ (57)
é/zi/R

Examining eq. 595, we note that when € = O, the only cyclic
solution is ﬁb= 1 =17. On the other hand, when the parameter
V = O, we know the pressure variation must nevertheless be

constrained by relations 50-52. Then 1f the pressure derivatives

15



THE FRANKLIN INSTITUTE - Laboratories for Research and Development
I-A2049-10
are also to be bounded, we observe from eq. 55 that " " must

again approach " 7", In view of these facts, we hypothesize

= %-7 as a small quantity and attempt an expansion in the

forms

W = eage)+ea(ﬁ)+e (/})+ - (58)

In terms of "u' the differential equation becomes:

de® du AT, 27 d7= 274  (59)
d/g,+zrdﬁ+2u¢+2d/§ E:

Now in terms of the series *xpansion in eq. 58,
ey
> e 44, —Zs Z”Uf._., (60)
J:,J' =0

Here the convention is adopted that v, = 0 for n=0.
Using the expansions from eqs. 58 and 60 in eq. 59, we get:

Ze ‘2 wj T 3Z6 ‘Q”— zwﬁﬂ%‘i ”%"" +4 (61)
A= J-—O =
+2,4M/eze u, +25 X = aze u—;%m/ff__e
n=0 A=o0 B
where:)/b(ﬂ)__ Xl ()= 4‘”%’ /’Kz(/g)-_—_—zi- Z/8
%”[ﬂ)=0’ l’l_>...'3 (62)

When the coefficients of the various powers of "€ ' are
squated to zero in eq. 61, the following sequence of linear

differential equations results.
{ ; J—
aﬁ U, — cosp U,.,) _DL(””_' w0l U ';Z =7
7
-2, () - 3 J?;-o 4 o (63)

16
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The cyclic solution for (u, - u,_jc0s8) 1s given by:

£ A -
P
Uy — 4, , LoeB = — € fe zr% aﬁZ J%J}Jﬂ (64)
where the constant of integration is to be taken as zero to

avoid an exponentially-increasing, non-pericdic solution.

The products Unup.j can all be reduced trigonometrically
to a sum of terms of the form cos(kg) or sin(k8), where "k"
is an integer. With vy, (@) standing for either of these func-

tions, the following indefinite integral formula is easily
derived:

&8 v
- fe p’V,eGé)d/g -_=/-;_—_/8—1T)’;_Z;7é'09)+ 1}5/_67/' (65)

With the aid of this formula we find from eq. 6l:
4, =7':;‘2_[Mru/3 + I)/Coﬂ'/éj (65)

U, = 4 oo — ¢ / /_,Am,e/e_,___ 61”:},;1;9 (66)

By squaring eq. 65 we find the terms in the curly brackets
of the integral in eq. 66 to be:

—4 A28 + 22/7-' Apn 28 + B ot Zp (67)
/ 2(/—-1)2)
where: A= ~Z +2 s ﬁ-;-z/*’)z (68)
3
8 = P52 (69)
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Applying eq. 66 again, we get:
p -
Uy = 4 o8 +/+¢‘}gf,4«2,)5)m.2)5 + (B+ 2;%4),&7@2/_47 (70)

, 24 g V¥
A-20B=p = -4 (/+(/z/+:26)2 ) (71)

B+2JA =B = _p[u- 2)* (72)
(7+P2)*

Substituting the expressions for uj and up in series 58, we

obtain the following expression for ”7&", valid to 0(62).

Z
}b___. /__EM/&-;— E(/-;‘é' M/f)/_{_‘)z (/Jw'v/d+l),¢o¢//$) +’)
2,) ) ,
+/j4’)2 A’sz/é + BM‘Z/&) Foeeeee {73)

To 0(e) eq. 73 gives precisely the Katto-Soda solutiong

i. e.,

== — 6 _ coc EX_ ton
¢ / /+ P2 /4"‘/,;,;2 7 (74)

Typical circumferential profiles of the dimensionless
pressure "}5 " are shown in Figs, 2 and 3, as computed from
eq. 73. These profiles are compared with others obtained by
an accurate numerical method, presently to be described. It
will be observed that the series solution is most accurate
for small " #" and small "e"., This characteristic was anti-
cipated in the formulation of series 58, It will also be ob-
served that the series solution is scarcely of adequate accur-

acy for the operating condition defined by # =1, € = 0.8 .

18
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Digital Computer Solutions:

In view of the difficulty in finding approximate solutions
of the one-dimensional gas bearing equations with sufficlent
accuracy, it was decided to attack the problem directly by
using standard numerical techniques to solve eq., 55. The
method employed was the interative scheme of Clippinger and
Dimsdales. The angle "A," corresponding to a maximum value
of ‘&9 was estimated from the Katto and Soda solution.

Then the solution was started at this angle and continued

in a clockwise direction with an angular increment of 7r/30.
Three "rotations" of the computer usually sufficed to produce

a solution periodic to within six significant figures.
Dimensionless pressure profiles were obtained for five differ-
ent eccentricities (€ = 0.2, 0.4, 0,6, 0.8, 0.9) with each

of four different values of the speed parameter "V" (¥ = 1,00,
0.5, 0.25, 0.125), Values of "' are listed in Tables 2-5,
They are believed to be correct to within one diglit in the

last figure tabulated.

The accuracy of both the series and digital computer com-
putations is confirmed by the close agreement hetween the re-
sults of both for small " ¥* and "€", as shown in Figs, 2
and 3., Actually, the derivation of the series was purely
formal, no proof of convergence being offered. As a check on

convergence, the following case was computed by both methods:

19
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Y =103 €= 0.05
The results are compared below in the neighborhood of the

pressure extremes. It will be observed that the inclusion

of terms beyond the original Katto-Soda solution does yield
a significant improvement in precision, tending to confirm

the assumption of convergence of the series.

20

TABLE 1 : COMPARISO! OF DIGITAL COMPUTER AND SERIXS SOLUTIONS
FOR THZ CASE # = 1.0; €= 0.05
Values of "Eb"

B (rad) Lg. 74 9. 73 Computer

2.40855 1.03531 1.03583 1.03580

2.35619 1.03536 1.03586 1,03583

2.30383 1.03531 1.€3578 1.03575

?501f 0.96469 0196522 0.96525

9779 0.96465 0.9651% 0.96518

543 0.961:69 0.96517 0.96520
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TABLE 2 I-A20L9~10C

PERIODIC SOLUTIONS OF THE KATTO-SODA DIFFERENTIAL EQUATION

_ T () AP
PZ{;——%Z]/ ; T /— € Cond

V¥ =1,00

€ — 0.20 040 0,60 0.80 0.90
COS/J;_’ -0.707 -0-629 “Q. 629 "0.629 -00629

R(a-£) ¥ P 2 4 2
o) 1.148 1.300 1.%59 1.621 1.703
1 1,14 1.285 1.%35 1.589 1,667
2 1.134 1.261 1.399 1.541 1.613
a 1.119 1,228 1.352 1,481 1. L7
1,100 1.189 1.298 1.413 L+73
5 1.078 1.146 1.23 1, 3%&_ 1 399
6 1.053 1.099 1,17 1.27 1.329
7 1.026 1.052 1.118 1,212 1.269
8 0.999 1,00k 1.061 1.158 1,221
9 0.972 0.958 1.008 1.113 1,186
10 0.946 0.91% 0.957 1.075% 1.162
11 0.928 0.873 0.910 1,0%1 1.142
12 0,902 0.836 0.863 1.006 1.121
1 0.886 0.805 0.820 0.966 1.092
1 0.874% 0.783 0.780 0,922 1.05

15 0.869 0.771 0.751 0.875 1.00
16 0.870 0.77% 0.738 0.836 0.953
17 0.878 0.791 0.7 0.816 0.915
18 0.892 0.82 0,784 0.829 0.906
19 0.912 0.86 0.842 0.878 0,937
20 0.937 0.922 0.918 0.959 1,008
21 0.966 0.982 1.004% 1.059 1,106
22 o 996 1.0k3 1.09% 1.169 1.220
2 1,027 1.10% 1,183 1,279 1,337
2 1.056 1.160 1.126 1.3 1 1447
25 1.083 1.209 1.33% 1.471 1,54
26 1.107 1.249 1.392 1.54%3 1.622
27 1,125 1.279 1.3k 1.595 1.679
28 1,139 1.298 1.459 1.622 1.711
29 1.1 1.305 1.467 1.63 1.719

Note: /g is in the second quadrant.
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TABLE 3 1-A2049~-10

PERIODIC SOLUTIONS OF THE KATTO-SODA DIFFERENTTAIL EQUATION

ﬂ.m I J— .Z * T2 = —_— & .
aE = T[T TS ST
Y = 0,50

€ —» 0.20 O.li'O 0.60 0080 0090

cos g,—= —0.843 - 0,843 —~ 0,843 -0.843 —-0.843
2E04-58 ) Y Y 2 2b P

0 1.179 1.360 1.542 1.72% 1,815
1 1.171 1.343 1.317 1.690 1.777
2 1.156 1.31 1.472 1.631 1.711
a 1.135 1,272 1.410 1.551 1,621
1,108 1.220 1.33% 1, 33 1,512
5 1,076 1,160 1,239 1.343 1.391
6 1.042 1.094 1.156 1.227 1.265
7 1.006 1.026 1.061 1.111 1,142
8 0.970 0,958 0.967 1.002 1.029
9 0.935 0.891 0.877 0490 0'938
10 0.902 0.828 0.793 0.81 0.85
11 0.874 0.772 0.716 0.745 0.803
12 0,851 0.72% 0.648 0.68 0.762
1 0.8 0.687 0.589 0,62 0.725
1 0.82 0.66k4 0.5 0.566 0.681
15 0.82 0,657 0.521 0.511 0.624

16 0.831 0.669 0.526 0. 7& 0.56

1 0.847 0.698 0.563 0.48 0.52
1 0.86 o.ghu 0.629 0. 54%7 0.553
19 0.89 0.803 0,718 0.652 0.643
20 0.931 0.871 0.821 0,784 0.777
21 0.96 0.945 0.932 0.928 0.933
22 1,006 1,021 1.0 1,077 1,096
2 1,043 1.096 1.157 1.223 1.258

2 1.079 1.167 1.460 1.359 1.40

25 1,111 1.229 1.353 1.479 1.5
26 1,138 1.282 1.430 1,580 1.656
2 1,159 1.323 1.439 1.657 1.742
2 1.173 1.350 1.528 1.708 1.798
29 1.180 1.362 1.546 1.730 1.823

Note: /60 is in the second quadrant.
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TABLE L

PERIODIC SOLUTIONS OF THE KATTO-SODA DIFFERENTIAL EQUATION
‘j;l/—z—és IZ;—,%]; 7= /- € codg

p= 0.25

€ —m 0.20 0.40 0.60 0.80 0.90

cos /90 — -Oc 9]‘]'0 -O. 91"‘0 “‘009)+O "'Oo 91{'0 "0.956
L0645 ) 7 2y Y 4 Y

0 1.193 1.386 1,580 1.773 1,874
1 1.185 1.369 1.554 1.740 1.845
2 1.168 1.337 1.506 1.675 1.781
; 1,145 1.290 1.0k37 1.528 1.684%
+ 1.115 1.232 1,349 1, 1,562
5 1.080 1,16 1.248 1.335 1.5%17
6 1,042 1.08 1.137 1.190 1.258
g 1,002 1.009 1.021 1.og9 1.092
0.962 0.930 0.905 0.889 0.926
9 0.924 0.85% 0.793 0.74%7 0.768
10 0,888 0,783 0.6S0 0.618 0.628
11 0.858 0.721 0.598 0.506 0.509
12 0.833 0.672 0.522 0.412 0417
1 0.816 0.636 0.5465 0.335 0.347
1 0.808 0,617 0.432 0.279 0.289
15 0.807 0.615 C. 426 0.253 0.235
16 0.816 0.632 0450 0.275 0.209
17 0.832 0.666 0.501 0.342 0.250
18 0.856 0.715 0.576 0.5%43 O-ago
19 0.887 0.777 0.670 0.569 0,184
20 0.923 0.849 0.779 0.71 0.4540
21 0.962 0.927 0.896 0.86 0.811
22 1,002 1.008 1,017 1.029 0.990
2 1.042 1.088 1,137 1.188 1.170
2 1,081 1.16 1.251 1.338 1.342
25 1.116 1.23 1, 1.475 1.499
26 1.145 1.293 1.4 1.591 1.635
2 1.169 1.339 1.510 1,682 1.745
2 1.185 1.3g1 1.557 1,744 1.823
29 1.193 1,337 1,581 1.775 1.867

Note: /@a is in the second quadrant.
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I-A2049-10
TABLE 5

PERTODIC SOLUTIONS OF THE KATTO-bODA DIFFERENTIAL EQUATION
- T = /-
= /f‘ 1%;/ 3 T=s [ —€ Lon8

2N
= 0,125

€ —» 0.20 0.40 0.60 0.80 0.90

cos g —=- ~0.992 -0,992 ~C.592 -0.992 ~0,992
'8

7(A-0) % P P ¥ o

0 1.198 1.397 1.595 1.79% 1.89

1 1.194% 1.388 1,582 1,777 87
2 1.181 1.363 1.&4& 1.726 1.817
a 1.161 1.322 1.483 1.64% 1.724%
1.133 1.266 1.400 1,534 1.601
5 1.100 1.200 1.300 1,402 1.452
6 1,062 1.1&3 1,188 1,252 1.284%
7 1,021 1.0 1.067 1,092 1.105
8 0.980 0.961 0944 0.929 0.922
9 0.939 0,880 0.823 0.769 0.74%3
10 0.901 0,804 0,710 0,619 0.576
11 0.868 0.737 0.608 0.486 0.428
12 0.840 0.681 0452k 0.374% 0306
1 0.819 0.639 0460 0.287 0.211
1 0.806 0.612 0,419 0.230 0.146
15 0.802 0.603 0.4+0% 0.208 0.11%
16 0.806 0.612 0.%18 0.225 0,129
17 0.819 0.638 0.457 0.278 0.190
18 0.840 0.680 0.521 0.364% 0.287
19 0.868 0.736 0,605 0.e77 OJ41k%
20 0.901 0.803 0,707 0.612 0.566
21 0.939 0.880 0.821 0.76% 0.736
22 0.980 0.961 0.94%3 0.926 0.918
2 1.021 1.04% 1.067 1.091 1.10k
2 1,062 1.125 1.188 1.252 1.284
25 1.100 1.200 1'381 1 402 1.453
26 1.133 1.267 1.%01 3 1..602
27 1,161 1.322 1.483 1 645 1.726
28 1.181 1. 363 1.545 1.727 1.818
29 1.29% 1.38 1.583 1.777 1.874%

Note:/ég is in the second quadrant,
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In order that the computed data on pressure distributions
may be useful, it is necessary to relate the internal pressures
of the infinlte bearing to some ambient pressure by means of
the mass content rule. When a change is made from convention-
al variables to those employed by Katto and Soda, the mass
content rule (eq. b44) gives:

*Kde = &* 2% ¢4 (75)

$r 9-/;5(/_5)95?*/3 7
= 2ﬂ-c3(/+§e'ﬁ)/g_2' (76)

Or: K = ‘?r(/*s/z 52) (77)

3, 2
A€ (1~ %)% 4 Lidp
7~
For the data tabulated in Tables 2-5 the required integra-

tion in eq. 77 was performed using Simpson's rule with an

angular interval of M /15.

With #/p,c known, the pressure ratio p/p, can readily
be found in terms of operating variables. Thus:

Pp = it —“—42, (78)

/—E
P = & pcofi-e? (

To prepare Design Charts in terms of conventional bear-
ing parameters, other integrations of the '79~curves are
required. For these integrations Simpson's rule was again

used with an angular interval of #%°/1Y.
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Design Charts:

The steady-state performance of an infinitely-long, self-

acting, ras-lubricated journal bearing can be completely ex-
pressed in terms of certain well-known bearing parameters,
In order that the subject matter of this section may he self-
contained, these parameters will here be defined in terms of
physical quantities which are easily interpreted. These par-
areters can be readily found from the g& ~curves, with the

use of eqs. 77-79.
Load Parameter, Cp

This parameter represents the ratio of the load, W, which
is actually supported by the bearing to the force which would
be exerted by ambient pressure acting over the projected area

of the shaft; 1. e.,

-
C.= 51D (78)

Attitude Angle, ¢

The attitude angle for a shaft rotating counter-cliock-
wise, as shown in Fig. 1, 1s the angle between the load vec-
tor, W, and the radius vector to the point of minimum £ilm

thickness; i. e.,
= 27-86, (79)

Friction Coefficient, C.

The frictlon parameter 1sthe ratio of the torque, M,

actually required to rotate the shaft in its eccentric
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position under load W, to the torque, M,y which would be
required to rotate the shaft if it were concentric with the

bearing; 1. e.,

C. = M (80)
f A

Eccentricity Ratio, €

This parameter measures the lack of concentricity of
the shaft with the bearing, and 1s the ratio of the difference
between maximum and minimum £ilm thicknesses (hp,y ~ h,4,) to

the difference between bearing and shaft diameters (2¢); i.e.,

b= H

E = _gv_az____fma. (81)
c

Compressibility Bearing Parameter, A

This parameter is 3/qr (practically unity) times the
ratio of the torque for concentric operation, M,, to the
torque that would be produced by ambient pressure acting
on the average cross-sectional film area, cL; 1. e.,

A= 2 M _ 5/*_9.)(»_2)2 (82)
RELR /o e

Table 6 summarigzes the inter-relationships of the fore-
going parameters, as found by digital computation for speci-
fie, discretely-spaced operating conditions. Design charts
based on these data (suitab;y extrapolated by the formulas

of Ausman and Katto-Soda.) are presented in Figs. W, 5 and
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Table 6
SUMMARY OF DIGITAL COMPUTER COMPUTATICNS

V £ _ A c, Cs ¢
1.0 0.2 0.9622 0.2207 1.0518 45,75
0.k 0.8209 0.4156 1.2346 47,97
0.6 0.541 0.4518 1.6536 52,78
0.8 0.2052 0.303 2.6722 54,
0.9 0.0715 0.170 %,0505 52,8
0.5 0.2 1.979 0,291k 1.0331 26.93
0.4 1.859 0.6367 1.1528 28.10
0.6 1.460 0.9967  1.4501 30.73
0.8 0.6348 0.9537 2.3268 35.05
0.9 0.2221 0.5933 3.6303 32.49
0.25 0.2 k,012 0.321k% 1,0242 14,0
0.k 3.976 o.ZF34 1.1090 14,3
0.6 3-61{'3 1. +0 103090 15. 10
0,8 2,379 2,47 1.8987 17.23
0.9 1.017 2,298 2,9412 19,80
0.125 0.2 8.058 0.3302 1.021% .1
O 8.110 o.% 69 1.0956 ;.13
8'3 g.ggé 1,581 %.;gzg 7.31
. . 30 79 . 566
0.9 4, 246 5.361 2.4733 5.27
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6. With their use the designer can quickly arrive at an
approximate bearing design. Approximate corrections for the

differences in behavior between bearings of finite and of

infinite length are given by Ausman 1n a paper presented
in this Symposium. Fven when designed according to this
method, the bearing may not perform satisfactorily because
the predicted mode of steady-state operation is unstable.
The theory of this "whirl" phenomenon is not yet fully under-
stood, so that each bearing design should be "proven" by ex-
periment. Further design considerations are given in ref. 9.
Several features of the curves in Fig. 4 are worthy of
comment. TFirst, at high values of the compressibility par-
ameter,/A, the load coefficient, Cqs becomes dependent on
the eccentricity ratio,€ , only. {(This fact might have been
anticipated from the inequality in eq. 52.) Thus an increase
of the rotational speed of a bearing may sometimes result in
a negligible increase of load-carrylng capacity. Also, if
the speed, ambient pressure, overall dimensions and minimum
film thickness of a bearing be maintained constant, an increase
of load-carrying capaclty may sometimes be achieved through
an increase of clearance, ¢! Second, at small values of the
eccentricity ratio the attitude angle becomes dependent on
the compressibility parameter only. Thus the compressibility

parameter sets the phase, so t¢ speak, of the pressure distrib-
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ution within the bearing relative to the film-thickness dis-

tribution in a manner somevhat similar to the way the free-

stream Mach number affects the pressure distribution on a

wave-shaped wall.10 Third, at very low values of the com-
pressibility parameter, the behavior of the complete, liquid-
filled, non-cavitating journal bearing is approached. This
region is crowded into the lower left-hand corner of Fig. k.

With respect to Fig. 5, which depicts the characteris-
tics of the friction coefficient, Coy 1t should be observed
that for small values of the eccentricity ratioc the coeffic-
ient is nearly that for concentric operation. AtA = 0, the
"incompressible" coefficients are shown, as constructed
from the data in ref. 11l. The important features of the
curves of attitude angle in Fig. 6 have already been discus-
sed in connection with Pig. k%.
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APPENDIX I

Derivation of the Zquations of Laminar Lubrication:

In this appendix the basic equatlons of laminar lubrica-
tion are derived from the over-all conservation equations of
momentum, energy and mass for a single-phase Newtonian fluid,
The geometry treated is tnat for the infinite slider hearing.
Generalization of the derivation to inelude finite slider
bearings is obvious, and generalization to include curved
surfaces can no doubt be accomplished with general tensor
techiniques similar to those employed in ref. 7.

The physical situation to be analysed 1s shown in
Fig. 7. The upper surface of the bearing is stationary.

Schematlc Diagram of Slipper Bearing

Lo .
O L o

Y,
0 ——2=

—>U
Vi

Fligure 7

The lower surface moves in the x~direction with velocity U.

The fluid pressures at the entrance and exit of the lubricating
film have the same value, p*. The bearing surfaces are taken
to be at the same uniform temperature, T*,

Basic Equations:

The eauations governing the two-dimensional motion of
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a Newtonian fluid are as follows (See, for example, ref, 5):

Conservation of Linear Momentum:

Plese <5y ]- 38+ 2lrtede- 3G 31 40
+2§? 2¥+9;"}] (A1)

G S ALY %+ 523 - 38+ 3N
Bxlﬂggf 92?}-7 (42)

Conservation of Mass:
QE_) g_g__) (43)

Conservation of Hnergy:

N Rl W
ARG [ 28 F Be i)+ BBy @

The boundary conditions to be satisfied are as follows:
u=U,v=0, T="T% y=0
u=0,vs=0,T="T¢ y = h(x) (A5)

jo) p¥s x =0 or L

Formulation of Dimension-free Zquations:

In order to determine the relative magnitudes of the
terms in equations 1-% in the limiting case of a very thin
fluid film, it s convenient to convert all terms to appropriate

dimensionless variables. First we define the new independent
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variables: X =x/Land 7 = y/h(x) (A6)
Then, as in ref, 7, we hypothesize that the film thickness
can be expressed in the form
h = h* exp [3 (3':')} (A7)
vhere }(‘:E) and its derivatives are of 0(1).
Now let /5¥and l)*be the fluid density and viscosity,
respectively, corresponding to the state (p*,T*). Then de-

_fine the new dependent variables:

2
— ul . wlS . - _F
u:—_-;—*; v:m*,/b—mg_
A4

Other barred quantities are to be made by dividing the local

(48)

dimensional quantity by its value at the reference state
(p*,T*). Thus: k = k/k(p*,T*), ete.

The barred variables are now substituted into egqs., 1=k,
When these substitutions are made, the characteristic small
parameter of fluid-dynamic lubrication appears; 1. e.,

d = h*/L (A9)

The resulting equations are:

o5 *
HEE ] = - A LG

bR SRR wo

- OF | K5 0F 45 05 _ 20
fﬁ%*f”?af]="a ag t5 93[’; hog I \ock
h* i
Zé' a4 }_7’*5"3%/@& a; 9x)/°(ax/g
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2%)#@—,;;) 4____ -agpv-) = 0O (A12)

e I T e T
AT R ek e R e

/5(2 SELS - S8 ERYT] o

e boundary conditions to be satisfied are:

- ¥* — —
u=UL/A),V=O,T=1; ¥ =0

Uu=0 sy v=0,T=1; ¥=1 (A1k)
P=1; X¥X=0orX=1

Expansion in )

As in ref, 7, let us now restrict consideration to those
solutions of the system 10-1% which can be expanded in " ",
Thus, we take:

u = Uy + §U1 + éﬁUg ete.

vE Vot 8V + eeeia (415)

P=Py+ JPy + ceunnnn

T=Tg+ OT] + eeenrns
Here the capitalized functions are to be independent of "J “.
The zeroth-order functions are made to assume all of the non~
zero boundary conditions for their respective barred quanti-

ties so that all higher order functions must vanish on the

boundaries.
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Before the substitution of functions 15 into egs., 10-1l

is made, one should note that all X derivatives at constant
"y" can be converted to ¥ derivatives at constant "¥¥ with-
out involvement of "&". Thus if ’Qb is any function of

position; we have:

(22;_3_2 = (%2/%&-*(%%}{; (A16)

54 = 2 2% 37) (22 L), (37 ) 2%

CE4m G e ) 88 Y ()
A (417)

(A18)

where: —a-_g- = —
2,
g}g‘&= 4 92__;_5)(;/3) -z (%f;‘-ﬁﬁ) (a19)

All functions of the thermodynamic state can be assumed

to deviate from the state (PO, TO) by 0(8). Thus:

P =TI = 7+ Jg,f/;?j’ + 5/22;%77 ... (420)

When, now, the series 15 and 20 are substituted into egs. 10-1l,
and the coefficients of the various powers of "S" are equated

to zero, we get:

122 w ol ~ 125
(%) 873 = (52, .
Q_Eé. = O ' (A22)
ag
2__%_;0900')_/.{’!2“?_(/9;;):0 (423)
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[ ) £ SR KT G
+ ”(A [:' ”) (a2h)

Similar, though more complicated, differential equationsg

are obtainable for the higher order functions. The equations
for laminar lubrication are cbtained by approximating the
barred quantities in eq. 15 by their zeroth order functions.
When reversion is made to the original physical variables,
and allowsuce 1s made for the additional space Variable,'éf

the resuliing equations are eqs. 1-5 of the main text.
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